(1)

What values could fill the gap so that the quadratic factorises nicely?
(2)

What must fill the gap if the point $(2,15)$ lies on the curve?
(3)

Fill in the gap if the graph is symmetrical about the $y$-axis.

## (8)

As the value in the gap changes, what curve does the parabola's vertex trace out?

## Quadratics 1

$$
y=x^{2}+\square x-9
$$

(4)

Fill the gap in two different ways to make the minimum value of $y$ equal -13 .

What point always lies on the curve, whatever number fills in the gap?
(1)

What values could fill the gap so that the quadratic factorises nicely?
[8] or 0 or -8
(2)

What must fill the gap if the point $(2,15)$ lies on the curve?

10

## Quadratics 1

$$
y=x^{2}+\square x-9
$$

## Answers!

(3)

Fill in the gap if the graph is symmetrical about the $y$-axis.

## 0

## (4)

Fill the gap in two different ways to make the minimum value of $y$ equal -13 . 4 or -4

What point always lies on the curve, whatever number fills in the gap?

$$
(0,-9)
$$

(1)

Fill the gap so that the $y$-intercept of the curve is at $(0,36)$.
(8)

What values could go in the gap if the line $y=-1$ intersects the curve twice?

Find two ways to fill the gap if the line $x+y=5$ is a tangent to the curve.
(2)

## Quadratics 2

$$
y=(x-\square)(x-9)
$$

(3)

Find the minimum value of $y$ if the curve goes through the point $(11,12)$.
(6)

Fill the gap so that the curve has the same line of symmetry as $y=x^{2}-15 x+60$.

Fill the gap if the graph has equation $y=x^{2}-4 x$ after being translated by the vector $\binom{-4}{5}$.
(4)

Fill the gap so that the curve has the same roots as

$$
y=4 x^{2}-41 x+45
$$

(1)

Fill the gap so that the $y$-intercept of the curve is at $(0,36)$.

4
(8)

What values could go in the gap if the line $y=-1$ does not intersect the curve?

$$
7<\square<11
$$

Find two ways to fill the gap if the line $x+y=5$ is a tangent to the curve.

6 or 14

Fill the gap so that $y \geq 0$ for all values of $x$.

```
9
```


## Quadratics 2

$$
y=(x-\square)(x-9)
$$

Answers!
(3)

Find the minimum value of $y$ if the curve goes through the point $(11,12)$.

5
(4)

Fill the gap if the graph has equation $y=x^{2}-4 x$ after being translated by the vector $\binom{-4}{5}$.

Fill the gap so that the curve has the same roots as

$$
\begin{gathered}
y=4 x^{2}-41 x+45 \\
1.25
\end{gathered}
$$

(1)

Find two numbers to fill the gap if the point $(12,7)$ lies on the curve.
(2)

Find two numbers to fill the gap if one of the roots of the curve is 3 .

## (8)

Show that the difference between the two roots of the curve is always 6 .

## Quadratics 3

$$
y=(x-\square)^{2}-9
$$

What values could fill the gap so that the curve has two negative roots?

## (5)

What must fill the gap if the line $y=-18 x$ intersects the curve at its vertex?
(1)

Find two numbers to fill the gap if the point $(12,7)$ lies on the curve.

8 or 16
(8)

Show that the difference between the two roots of the curve is always 6 .
(many different methods possible)

Find two numbers to fill the gap if the vertex of the curve is 15 units from the origin.

$$
-12 \text { or } 12
$$

Find two numbers to fill the gap if one of the roots of the curve is 3 .
0 or 6

## Quadratics 3

$$
y=(x-\square)^{2}-9
$$

Answers!
(2)
(3)

What is the minimum value of $y$ ? Explain your answer.

$$
\begin{equation*}
-9, \text { e.g. because }(x-\square)^{2} \geq 0 \tag{4}
\end{equation*}
$$

What values could fill the gap so that the curve has two negative roots? $<-3$
(5)

What must fill the gap if the line $y=-18 x$ intersects the curve at its vertex?
0.5

