
Geometric Configurations of Simultaneous Equations

Match the systems of linear equations to their geometric configuration.

1	3x + 2y - 5z = 37x - y - 2z = 36x + 4y - 10z = 6
2	3x + 2y - 5z = 37x - y - 2z = 36x + 4y - 10z = -1
3	3x + 2y - 5z = 37x - y - 2z = 32x - 3y + 4z = -1
4	3x + 2y - 5z = 3 -15x - 10y + 25z = -15 6x + 4y - 10z = 6
5	3x + 2y - 5z = 37x - y - 2z = 34x - 3y + 3z = -1
6	3x + 2y - 5z = 37x - y - 2z = 24x - 3y + 3z = -1
7	3x + 2y - 5z = 3 -15x - 10y + 25z = -15 6x + 4y - 10z = -1
8	3x + 2y - 5z = 3 -15x - 10y + 25z = 3 6x + 4y - 10z = -1

1. Fill in the gaps using only the numbers 2 or 4 to make each configuration. (One of them is impossible!)

Α	3x + y + 2z = 4 $3x + y + \Box z = \Box$ $6x + \Box y + \Box z = 8$
В	3x + y + 2z = 4 $3x + y + \Box z = \Box$ $6x + \Box y + \Box z = 8$
С	3x + y + 2z = 4 $3x + y + \Box z = \Box$ $6x + \Box y + \Box z = 8$
D	3x + y + 2z = 4 $3x + y + \Box z = \Box$ $6x + \Box y + \Box z = 8$
E	3x + y + 2z = 4 $3x + y + \Box z = \Box$ $6x + \Box y + \Box z = 8$
F	3x + y + 2z = 4 $3x + y + \Box z = \Box$ $6x + \Box y + \Box z = 8$
G	3x + y + 2z = 4 $3x + y + \Box z = \Box$ $6x + \Box y + \Box z = 8$
н	3x + y + 2z = 4 $3x + y + \Box z = \Box$ $6x + \Box y + \Box z = 8$

2x - y + 3z =3 Α |2x - y + | |z = $4x - 2y + \Box z = \Box$ 2x - y + 3z = 3B $2x - y + \begin{vmatrix} z \end{vmatrix}$ = 4x - 2y + |z| =2x - y + 3z = 3С $2x - y + \boxed{z} =$ $4x - 2y + \bigsqcup z =$ = 3 2x - y + 3z $2x - y + \boxed{z}$ D = $4x - 2y + \boxed{z} = \boxed{}$ 2x - y + 3z = 3Ε 2x - y + | z= $4x - 2y + \boxed{z}$ = 2x - y + 3z = 3 $2x - y + \Box z =$ F $4x - 2y + \bigsqcup z$ = 3 = 2x - y + 3zG 2x - y + | z= $4x - 2y + \lfloor \ \ \ \ z =$ 2x - y + 3z3 = н = $4x - 2y + \bigsqcup z$ =

2. Fill in the gaps using only the numbers 3 or 6 to make each configuration. (One of them is impossible!)

3. Fill in the gaps using only the numbers 2 or 4 to make each configuration. (One of them is impossible!)

Α	$3x + 2y + \boxed{z} = 1$ $6x + 4y + \boxed{z} = $ $6x + \boxed{y} + \boxed{z} = 5$
В	$3x + 2y + \boxed{z} = 1$ $6x + 4y + \boxed{z} = $ $6x + \boxed{y} + \boxed{z} = 5$
С	$3x + 2y + \boxed{z} = 1$ $6x + 4y + \boxed{z} = $ $6x + \boxed{y} + \boxed{z} = 5$
D	$3x + 2y + \boxed{z} = 1$ $6x + 4y + \boxed{z} = $ $6x + \boxed{y} + \boxed{z} = 5$
E	$3x + 2y + \boxed{z} = 1$ $6x + 4y + \boxed{z} = $ $6x + \boxed{y} + \boxed{z} = 5$
F	$3x + 2y + \boxed{z} = 1$ $6x + 4y + \boxed{z} = $ $6x + \boxed{y} + \boxed{z} = 5$
G	$3x + 2y + \boxed{z} = 1$ $6x + 4y + \boxed{z} = $ $6x + \boxed{y} + \boxed{z} = 5$
н	$3x + 2y + \boxed{z} = 1$ $6x + 4y + \boxed{z} = $ $6x + \boxed{y} + \boxed{z} = 5$