Averages with...

Fractions

Find the mean, median, and range of:

$$3\frac{1}{3}$$
, $6\frac{1}{6}$, and $2\frac{1}{2}$

Area and Perimeter

A rectangle has a width of 3 cm and a height of 2 cm.

Draw a second rectangle so that the two rectangles have a mean area of 13 cm^2 and have perimeters with a range of 8 cm.

Standard Form

Find the median of the following:

$$3 \times 10^{-4}$$
,

$$4 \times 10^{-3}$$

$$5 \times 10^{-6}$$

$$6 \times 10^{-5}$$
.

Surds

John says:

'The mean of $\sqrt{12}$, $\sqrt{27}$, and $\sqrt{48}$ is $\sqrt{29}$.'

Explain and correct the mistake that John has made.

Bounds

Find the upper and lower bounds for the median of the following numbers:

3.5 (one decimal place),

27 (two significant figures),

30 (nearest ten).

Angles

Find the upper bound for the median angle in a quadrilateral.

Is it possible to actually draw a quadrilateral with that median angle?

Averages	with
----------	------

Fractions

Find the mean, median, and range of:

$$3\frac{1}{3}$$
, $6\frac{1}{6}$, and $2\frac{1}{2}$

Standard Form

Find the median of the following:

$$3 \times 10^{-4}$$

$$4 \times 10^{-3}$$
,

$$5 \times 10^{-6}$$

$$6 \times 10^{-5}$$
.

Bounds

Find the upper and lower bounds for the median of the following numbers:

- 3.5 (rounded to one decimal place),
 - 27 (to two significant figures),
 - 30 (to the nearest ten).

Averages with	
Area and Perimeter	
A rectangle has a width of 3 cm and a height of 2 cm.	
Draw a second rectangle so that the two rectangles have a mean area of 13 cm ² and have perimeters with a range of 8 cm.	
Surds	
Zoe says:	
'The mean of $\sqrt{12}$, $\sqrt{27}$,	
and $\sqrt{48}$ is $\sqrt{29}$.'	
Explain and correct the mistake that Zoe has made.	
Angles	
Find the upper bound for the median angle in a quadrilateral.	
Is it possible to actually draw a quadrilateral with that median angle?	

Averages with...

Fractions

Find the mean, median, and range of:

$$3\frac{1}{3}$$
, $6\frac{1}{6}$, and $2\frac{1}{2}$

Mean = 4

Median =
$$3\frac{1}{3}$$

Range =
$$3\frac{2}{3}$$

Standard Form

Find the median of the following:

$$3 \times 10^{-4}$$
.

$$4 \times 10^{-3}$$

$$5 \times 10^{-6}$$

$$6 \times 10^{-5}$$
.

1.8×10^{-4}

Bounds

Find the upper and lower bounds for the median of the following numbers:

3.5 (rounded to one decimal place),

27 (to two significant figures),

30 (to the nearest ten).

 $25 \leq Median < 27.5$

Averages with...

Area and Perimeter

A rectangle has a width of 3 cm and a height of 2 cm.

Draw a second rectangle so that the two rectangles have a mean area of 13 cm^2 and have perimeters with a range of 8 cm.

Area =
$$20 \text{ cm}^2$$

Perimeter = 18 cm

4

5 cm

Surds

Zoe says:

'The mean of $\sqrt{12}$, $\sqrt{27}$, and $\sqrt{48}$ is $\sqrt{29}$.'

Explain and correct the mistake that Zoe has made.

Zoe found the square root of the mean of 12, 27 and 48.

She should have done:

Mean =
$$\frac{\sqrt{12} + \sqrt{27} + \sqrt{48}}{3}$$

= $\frac{2\sqrt{3} + 3\sqrt{3} + 4\sqrt{3}}{3}$
= $\frac{9\sqrt{3}}{3} = 3\sqrt{3} (= \sqrt{27})$

Angles

Find the upper bound for the median angle in a quadrilateral.

Is it possible to actually draw a quadrilateral with that median angle?

Upper bound is 120° , which would be achieved if the angles were 0° , 120° , 120° , and 120° .

But this quadrilateral is not itself possible due to the 0° .